§ 25.1433 their installations, critical environmental conditions must be considered. - (b) Radio and electronic equipment must be supplied with power under the requirements of §25.1355(c). - (c) Radio and electronic equipment, controls, and wiring must be installed so that operation of any one unit or system of units will not adversely affect the simultaneous operation of any other radio or electronic unit, or system of units, required by this chapter. #### §25.1433 Vacuum systems. There must be means, in addition to the normal pressure relief, to automatically relieve the pressure in the discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–72, 55 FR 29785, July 20, 1990] ### $\S 25.1435$ Hydraulic systems. - (a) *Element design*. Each element of the hydraulic system must be designed to: - (1) Withstand the proof pressure without permanent deformation that would prevent it from performing its intended functions, and the ultimate pressure without rupture. The proof and ultimate pressures are defined in terms of the design operating pressure (DOP) as follows: | Element | Proof
(xDOP) | Ultimate
(xDOP) | |--|-----------------|--------------------| | Tubes and fittings Pressure vessels containing gas: | 1.5 | 3.0 | | High pressure (e.g., accumulators) | 3.0 | 4.0 | | Low pressure (e.g., reservoirs) | 1.5 | 3.0 | | 3. Hoses | 2.0 | 4.0 | | 4. All other elements | 1.5 | 2.0 | - (2) Withstand, without deformation that would prevent it from performing its intended function, the design operating pressure in combination with limit structural loads that may be imposed; - (3) Withstand, without rupture, the design operating pressure multiplied by a factor of 1.5 in combination with ultimate structural load that can reasonably occur simultaneously; - (4) Withstand the fatigue effects of all cyclic pressures, including transients, and associated externally in- duced loads, taking into account the consequences of element failure; and - (5) Perform as intended under all environmental conditions for which the airplane is certificated. - (b) $System\ design.$ Each hydraulic system must: - (1) Have means located at a flightcrew station to indicate appropriate system parameters, if - (i) It performs a function necessary for continued safe flight and landing; - (ii) In the event of hydraulic system malfunction, corrective action by the crew to ensure continued safe flight and landing is necessary; - (2) Have means to ensure that system pressures, including transient pressures and pressures from fluid volumetric changes in elements that are likely to remain closed long enough for such changes to occur, are within the design capabilities of each element, such that they meet the requirements defined in §25.1435(a)(1) through (a)(5); - (3) Have means to minimize the release of harmful or hazardous concentrations of hydraulic fluid or vapors into the crew and passenger compartments during flight; - (4) Meet the applicable requirements of §§ 25.863, 25.1183, 25.1185, and 25.1189 if a flammable hydraulic fluid is used; and - (5) Be designed to use any suitable hydraulic fluid specified by the airplane manufacturer, which must be identified by appropriate markings as required by §25.1541. - (c) Tests. Tests must be conducted on the hydraulic system(s), and/or subsystem(s) and elements, except that analysis may be used in place of or to supplement testing, where the analysis is shown to be reliable and appropriate. All internal and external influences must be taken into account to an extent necessary to evaluate their effects, and to assure reliable system and element functioning and integration. Failure or unacceptable deficiency of an element or system must be corrected and be sufficiently retested, where necessary. - (1) The system(s), subsystem(s), or element(s) must be subjected to performance, fatigue, and endurance tests #### Federal Aviation Administration, DOT representative of airplane ground and flight operations. - (2) The complete system must be tested to determine proper functional performance and relation to the other systems, including simulation of relevant failure conditions, and to support or validate element design. - (3) The complete hydraulic system(s) must be functionally tested on the airplane in normal operation over the range of motion of all associated user systems. The test must be conducted at the system relief pressure or 1.25 times the DOP if a system pressure relief device is not part of the system design. Clearances between hydraulic system elements and other systems or structural elements must remain adequate and there must be no detrimental effects. [Doc. No. 28617, 66 FR 27402, May 16, 2001] # § 25.1438 Pressurization and pneumatic systems. - (a) Pressurization system elements must be burst pressure tested to 2.0 times, and proof pressure tested to 1.5 times, the maximum normal operating pressure. - (b) Pneumatic system elements must be burst pressure tested to 3.0 times, and proof pressure tested to 1.5 times, the maximum normal operating pressure. - (c) An analysis, or a combination of analysis and test, may be substituted for any test required by paragraph (a) or (b) of this section if the Administrator finds it equivalent to the required test. [Amdt. 25-41, 42 FR 36971, July 18, 1977] ### § 25.1439 Protective breathing equipment. (a) If there is a class A, B, or E cargo compartment, protective breathing equipment must be installed for the use of appropriate crewmembers. In addition, protective breathing equipment must be installed in each isolated separate compartment in the airplane, including upper and lower lobe galleys, in which crewmember occupancy is permitted during flight for the maximum number of crewmembers expected to be in the area during any operation. - (b) For protective breathing equipment required by paragraph (a) of this section or by any operating rule of this chapter, the following apply: - (1) The equipment must be designed to protect the flight crew from smoke, carbon dioxide, and other harmful gases while on flight deck duty and while combating fires in cargo compartments. - (2) The equipment must include— - (i) Masks covering the eyes, nose, and mouth; or - (ii) Masks covering the nose and mouth, plus accessory equipment to cover the eyes. - (3) The equipment, while in use, must allow the flight crew to use the radio equipment and to communicate with each other, while at their assigned duty stations. - (4) The part of the equipment protecting the eyes may not cause any appreciable adverse effect on vision and must allow corrective glasses to be worn. - (5) The equipment must supply protective oxygen of 15 minutes duration per crewmember at a pressure altitude of 8,000 feet with a respiratory minute volume of 30 liters per minute BTPD. If a demand oxygen system is used, a supply of 300 liters of free oxygen at 70 °F. and 760 mm. Hg. pressure is considered to be of 15-minute duration at the prescribed altitude and minute volume. If a continuous flow protective breathing system is used (including a mask with a standard rebreather bag) a flow rate of 60 liters per minute at 8,000 feet (45 liters per minute at sea level) and a supply of 600 liters of free oxygen at 70 °F. and 760 mm. Hg. pressure is considered to be of 15-minute duration at the prescribed altitude and minute volume. BTPD refers to body temperature conditions (that is, 37 °C., at ambient pressure, dry). - (6) The equipment must meet the requirements of paragraphs (b) and (c) of §25.1441. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–38, 41 FR 55468, Dec. 20, 1976] ## §25.1441 Oxygen equipment and supply. (a) If certification with supplemental oxygen equipment is requested, the